高中数学基础:概率与统计

基本概念

函数关系是一种确定性关系,相关关系是一种非确定性关系
判断两个变量间的关系是否为相关关系的关键是看这个关系是否具有不确定性

概率是一个稳定的数值,也就是某件事发生或不发生的概率是多少
频率是在一定数量的某件事情上面,发生的数与总数的比值.
假设事件$A$的概率是0.3,在100次中发生28次,那么它的频率是28/100=0.28
频率是有限次数的试验所得的结果,概率是频数无限大时对应的频率

频率的稳定值是概率,频率随试验次数的不同是变化的,是一个统计规律,但它都在概率附近摆动,而一个事件的概率是不变的

抽样方法

① 简单随机抽样(总体个数较少)
② 系统抽样(总体个数较多)
③ 分层抽样(总体中差异明显)

注意:在$N$个个体的总体中抽取出$n$个个体组成样本,每个个体被抽到的机会(概率)均为$\frac{n}{N}$

总体特征数的估计

(1)平均数

$$
\overline{x} = \frac{x_1+x_2+x_3+···+x_n}{n}
$$

取值为$x_1,x_2,···,x_n$的频率分别为$p_1,p_2,···,p_n$,则其平均数为$x_1p_1,x_2p_2,···,x_np_n$

(2)方差

$$
s^2 = \frac{1}{n}\sum_{i=1}^n(x_i-\overline{x})^2
$$

(3)标准差

$$
s = \sqrt{\frac{1}{n}\sum_{i=1}^n(x_i-\overline{x})^2}
$$

注:方差与标准差越小,说明样本数据越稳定。平均数反映数据总体水平,方差与标准差反映数据的稳定水平。

线性回归方程

① 变量之间的两类关系:函数关系与相关关系
② 制作散点图,判断线性相关关系
③ 线性回归方程:$\hat{y}=bx+a$ (最小二乘法)

$$
b = \frac{\sum_{i=1}^n x_iy_i - n\overline{x}\overline{y}}{\sum_{i=1}^n x_i^2 - n\overline{x}^2}
$$

$$
a = \overline{y} - b\overline{x}
$$

注意:线性回归直线经过定点$(\overline{x}, \overline{y})$

相关关系

定义:如果两个变量中一个变量的取值一定时,另一个变量的取值带有一定的随机性,那么这两个变量之间的关系,叫做相关关系

两类特殊的相关关系:如果散点图中点的分布是从左下角右上角的区域,那么这两个变量的相关关系称为正相关;如果散点图中点的分布是从左上角右下角的区域,那么这两个变量的相关关系称为负相关

线性相关

如果两个变量散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线

最小二乘法:求线性回归直线方程$\hat{y}=bx+a$时,使得样本数据的点到它的距离的平方和最小的方法叫做最小二乘法,其中$a$,$b$的值由以下公式给出:

$$
\hat{b} = \frac{\sum_{i=1}^n (x_i-\overline{x})(y_i-\overline{y})}{\sum_{i=1}^n (x_i-\overline{x})^2} = \frac{\sum_{i=1}^n x_iy_i - n\overline{x}\overline{y}}{\sum_{i=1}^n x_i^2 - n\overline{x}^2}
$$

$$
\hat{a} = \overline{y} - \hat{b} \overline{x}
$$

其中,$\hat{b}$是回归方程的斜率,$\hat{a}$是回归方程在$y$轴上的截距。

归纳总结:回归直线是对原数量关系的一种拟合,如果两个变量不具有线性相关关系,即使求出回归方程也是毫无意义的,而且由其得到估计和预测的值也是不可信的。

随机事件及其概率

事件:试验的每一种可能的结果,用大写英文字母表示

随机事件$A$的概率:

$$
P(A) = \frac{m}{n}, , 0≤P(A)≤1
$$

古典概型

(1)基本事件:一次试验中可能出现的每一个基本结果
(2)古典概型的特点
        ① 所有的基本事件只有有限个
        ② 每个基本事件都是等可能发生
(3)古典概型概率计算公式:一次试验的等可能基本事件共有$n$个,事件$A$包含其中的$m$个基本事件,则事件$A$发生的概率:

$$P(A)=\frac{m}{n}$$

几何概型

(1)几何概型的特点
        ① 所有的基本事件是无限个
        ② 每个基本事件都是等可能发生
(2)几何概型概率计算公式:

$$P(A)=\frac{d的测度}{D的测度}$$

其中测度根据题目确定,一般为线段、角度、面积、体积等。

互斥事件

(1)不可能同时发生的两个事件成为互斥事件
(2)如果事件$A_1,A_2,···,A_n$任意两个都是互斥事件,则称事件$A_1,A_2,···,A_n$彼此互斥。
(3)如果事件$A$,$B$互斥,那么事件$A+B$发生的概率,等于事件$A$,$B$发生的概率的和,即

$$P(A+B)=P(A)+P(B)$$

(4)如果事件$A_1,A_2,···,A_n$彼此互斥,则有:

$$P(A_1+A_2+···+A_n)=P(A_1)+P(A_2)+···+P(A_n)$$

(5)对立事件:两个互斥事件中必有一个要发生,则称这两个事件为对立事件。
        ① 事件$A$的对立事件记作$\overline{A}$,即$P(A)+P(\overline{A}),,P(\overline{A})=1-P(A)$
        ② 对立事件一定是互斥事件,互斥事件未必是对立事件

相互独立事件

事件$A$(或$B$)是否发生对事件$B$(或$A$)发生的概率没有影响,即其中一个事件是否发生对另一个事件发生的概率没有影响。这样的两个事件叫做相互独立事件。

当$A$、$B$是相互独立事件时,那么事件$A·B$发生(即$A$、$B$同时发生)的概率,等于事件$A$、$B$分别发生的概率的积。即

$$P(A·B)=P(A)·P(B)$$

若$A$、$B$两事件相互独立,则$A$与$\overline{B}$、$\overline{A}$与$B$、$\overline{A}$与$\overline{B}$也都是相互独立的。

独立重复试验

(1)一般地,在相同条件下重复做的$n$次试验称为$n$次独立重复试验。
(2)独立重复试验的概率公式:如果在1次试验中某事件发生的概率是$p$,那么在$n$次独立重复试验中这个试验恰好发生$k$次的概率为

$$ P_n(k)=C_n^kp^k(1-p)^{n-k} ,, (k=0,1,2,···n)$$

条件概率

对任意事件$A$和事件$B$,在已知事件$A$发生的条件下事件$B$发生的概率,叫做条件概率,记作$P(B|A)$,读作$A$发生的条件下$B$发生的概率。

$$
P(B|A) = \frac{P(AB)}{P(A)}, , P(A)>0
$$